
Technical Report

0 1CMU/SEI-89-TR-32
ESD-TR-89-43

0
Carnegie-Mellon University

* c..4 Software Engineering Institute

04

The Durra Application Debugger/Monitor

Dennis L. Doubleday

September 1989

" *DTICS ELECTE
MAR 15 19901

Bf ON N A
Approved for c eeAse
"" raI.7a rA

2 *

Technical Report
CMU/SEI-89-TR-32

ESD-TR-89-43

September 1989

The Durra Application Debugger/Monitor

Dennis L. Doubleday

Software for Heterogeneous Machines Project

* Acce1so' For

N is CRA&

E TI , fAd 0

U . 1;"r'o.t c(d

By

YY

I I dI, I

A,, !;" e

Approved for public release.Distribution
unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

S

S

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub- •
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD persormel. DoD contractors and potential conuractors. and other U.S. Government agency personnel *
andtheircontractors. To obtainacopy. pleasecontact DTIC directly- DefenseTechnicalInformation Center, Atn: FDRA. Cameron
Station, Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

S

Table of Contents
1. Introduction to Durra 1

1.1. The Durra Language and Method 1
1.2. The Durra Runtime Environment 3

2. The Durra Application Debugger/Monitor 5

3. Implementation of the Application Debugger/Monitor 7

4. Application Debugger/Monitor Commands 11
4.1. Go, Quit, and CtrI-C Commands 11
4.2. Watch and Break Commands 12
4.3. Kill, Stop, and Resume Command;, 14
4.4. Show and Track Commands 15
4.5. Read, Echo, and Silent Commands 18
4.6. Set Commands 19
4.7. Miscellaneous Commands 19

References 21

Index 23

CMU/SEI-89-TR-32

9

0

0

0

0

0

0

0

CMU/SEI-89-TR-32
0

List of Figures
Figure 1: Compilation of an Application Description 2
Figure 2: The Durra Runtime Environment 3
Figure 3: The Expanded Durra Runtime Environment 7
Figure 4: Durra Application Example 9

00

0M/E-8-R3

The Durra Application Debugger/Monitor

Abstract. 'Durra is a language designed to support the construction of distri-
buted applications using concurrent, coarse-grained tasks running on net-
works of heterogeneous processors. An application written in Durra describes

0 the tasks to be instantiated and executed as concurrent processes, the types
of data to be exchanged by the processes, and the intermediate queues re-
quired to store the data as they move from producer to consumer processes.

This report describes the Durra application debugger/monitor, a program that
works in conjunction with the Durra runtime software to help the developer lo-

* cate errors and/or performance bottlenecks in a Durra application.

1. Introduction to Durra

1.1. The Durra Language and Method

Durra [3, 1, 4] is a language designed to support the construction of distributed applica-
* tions using concurrent, coarse-grained tasks running on networks of heterogeneous

processors. An application written in Durra selects and reuses task descriptions and
type declarations stored in a library. The application describes the tasks to be instan-
tiated and executed as concurrent processes, the types of data to be exchanged by the
processes, and the intermediate queues required to store the data as they move from
producer to consumer processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level descrip-
tion language. We use the term description language rather than programming
language to emphasize that a Durra application is not translated into object code in an
executable (conventional) machine language. Instead, a Durra application is a descrip-

* tion of the structure and behavior of a logical machine that is to be synthesized into
resource allocation and scheduling directives, which are then interpreted by a combi-
nation of software, firmware, and hardware in each of the processors and buffers of a
heterogeneous machine. This is the translation process depicted in Figure 1.

* There are three distinct phases in the process of developing an application using Durra:
the creation of a library of tasks, the creation of an application using library tasks, and
the execution of the application.

During the first phase, the developer writes descriptions of the component tasks. A task
* description specifies some set of properties of the task implementation, including the

ports through which a task communicates with other tasks, the types of data it produces

CMU/SEI-89-TR-32

Status and Task requests
Get/Put data

Test port
Terminate task

Schedule lConectivity 0
Task names Messages
Transformations Start task 0

. Allocate queue

* Shutdown

Figure 1: Compilation of an Application Description

or consumes, and other miscellaneous attributes of the implementation. For a given
task, there may be many implementations, differing in programming language (e.g., C or
assembly language), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics, or other attributes. For each implementation of a task, a description
must be written in Durra, compiled, and entered in the library.

During the second phase, the user writes an application description. Syntactically, an
application description is a single task description that can be stored in the library as a
new task, allowing for the writing of hierarchical application descriptions. At this level the
developer specifies such things as the queues connecting individual ports, required data
transformations, and potential reconfigurations (changes in the topology of the
application). Compiling the application description generates a set of commands, or in-
structions, about resource allocation and scheduling to be interpreted by the Durra ex-
ecutive (see Section 1.2).

During the last phase, the executive loads the task implementations (i.e., programs cor-
responding to the component tasks) onto the processors and issues the appropriate
commands to execute the programs.

2 CMU/SEI-89-TR-32

ii I

1.2. The Durra Runtime Environment

This section provides a summary of the Durra runtime environment sufficient for the pur-
pose of understanding the Durra application debugger/monitor's relationship to the other
components of the environment. For a more detailed description of the the runtime envi-
ronment, see [2, 4].

processor3 processor1

X]executive

executive run task (sever

(master) shutdown

restart

user task

init
finish
getportid processor2
gettypeidsend-Port
get_port execu(sevetest inputjport (s]eeuve

test-output-port ee
f user task!P

Figure 2: The Durra Runtime Environment

There are two active components of the minimal Durra runtime environment: the appli-
cation tasks and the Durra executives. Figure 2 shows the relationship between these
components. The executives can run in master or server mode. There is one server
executive on each processor in the configuration and it is responsible for starting all
tasks assigned to that processor. There is one master executive for the entire network
and it is responsible for telling the server(s) which tasks to start, establishing commuil,
cation links, and controlling the execution of the application. The executives implement

CMU/SEI-89-TR-32 3

the predefined tasks (broadcast, merge, and deal) described in [3]. The executives'
specific actions are prescribed by a file containing instructions generated by the Durra 0
compiler.

Once its description has been compiled as described in Section 1.1, an application can
be executed by performing the following operations:

1. Load the task implementations into system-defined locations on the •
processors where they will run.

2. Start an instance of the Durra executive on each processor. All but one of
these executives runs in server mode. The remaining executive runs in
master mode. The master executive reads instruction file and initiates ap-
plication execution.

4 CMU/SEI-89-TR-32

2. The Durra Application Debugger/Monitor
Just as a software developer using a traditional high-level programming language re-
quires a symbolic debugger to efficiently isolate problems in his implementation, so a
Durra application developer will need automated assistance to isolate bugs, tune perfor-
mance, and control the execution of the application. The application debugger/monitor
(hereafter referred to as the monitor, for brevity) addresses this requirement.

Durra applications are potentially very complex. The Durra developer may face dif-
ficulties in debugging and tuning his application that the traditional software developer
need not consider, such as 'ributed concurrent processes, heterogeneous processor
architectures, mixed-language programming, dynamic reconfiguration, etc. The fact that
Durra hides the details of these complications from the developer is an advantage during
development but an impediment during testing. At the testing stage, access to the infor-
mation about the application state that is encapsulated in the executive, as well as about
the state of the individual programs which make up the Durra application, is useful.

The monitor provides this information at two levels, the application level and the source
level The primary focus of the monitor is at the application level. Here the monitor
provides the abstracted Durra view of the world, where the individual tasks are treated
as black boxes connected to each other through Durra ports and queues. The user can
examine executive-internal data, insert break points on Durra communication interfaces,
change task attributes, and do other miscellaneous operations. See Chapter 3 for de-
tails.

Obviously, it is also necessary to debug an application at the source level. In a mixed-
language, mixed-architecture environment, it is not feasible or desirable for Durra to pro-
vide a source-level debugging capability. Instead, the monitor provides a simple mecha-
nism for allowing the developer to use existing source-level debuggers, tools which are
widely available and with which the developer is already familiar.

The Durra application developer will also be concerned with tuning the performance of
this application. Often it is difficult to isolate a performance bottleneck in one part of the
application or another. With this in mind, the monitor provides a tracking facility to moni-
tor the flow of data through the Durra queues. Given this information, the developer may
be able to identify the task causing the problem and take corrective actions, such as
moving the task to a faster processor or re-implementing the task to improve its effi-
ciency.

Finally, the monitor provides the developer with the means to control the execution of the
application, e.g., stepping through the execution, one data transmission at a time, rather
than allowing the application to run freely. Such control is especially useful for applica-
tions with many specified reconfigurations, because the reconfigurations may be trig-
gered by conditions which are difficult and/or time-consuming to simulate in testing
mode. The monitor allows the user to trigger the reconfiguration whether or not the trig-
ger condition has been satisfied.

CMU/SEI-89-TR-32 5

0

0

0

S

0

0

0

S

0

6 CMU/SEI-89-TR-32
0

3. Implementation of the Application
Debugger/Monitor

The monitor is an optional component of the Durra runtime environment. The user may
invoke it independently at any time during the execution of a Durra application, in which
case it can run on any networked processor where its executable image resides. Alter-
natively, assuming the environment supports the X Window System [6], the monitor may
be activated as part of the runtime environment start-up procedure (via an optional argu-
ment to the executive command line), in which case it will run on the same processor as
the executive. The X support is required in the latter case because a dedicated window
must handle the monitor's user interface. Durra: A Task-Level Description Language
User's Manual [5] (hereafter referred to as the Durra User's Manual) describes in detail
the start-up process in the Unix environment.

processor3 processor1

executive

executive runtask

(master) shutdown

restart

______ _____ ____u uer task

init
finish

debug/monitor task get-portid processor2
get typeid poesr
sendport
getport I
testjinputport (server)
test outputport

CL___juser task

Figure 3: The Expanded Durra Runtime Environment

CMU/SEI-89-TR-32 7

As shown in Figure 3, the monitor exchanges information with the master executive
through a remote procedure call (rpc) interface, just as Durra application tasks do. How-
ever, the monitor has its own distinct set of rpcs.

The principal processing loop of the Durra executive scans for incoming communications
from all Durra tasks, including the monitor if it has been activated. The only monitor rpcs
the executive sees at this level are Init_Monitor and Interrupt; the former call occurs
when the monitor starts up, the latter when the user types ctrI-C at the keyboard in order
to interrupt execution of the application. On acceptance of either call, the executive
transfers control to an alternate processing loop, one in which only calls from the monitor
are accepted. This causes all application tasks to block on their ensuing rpcs to the
executive. At this point the monitor prompts for commands (see Chapter 4) and proc-
esses them, continuing until the command go is issued, causing return of control to the
main processing loop.

While the executive processes communications from application tasks, the monitor waits
for input from either the executive or the keyboard. If the monitor user has requested it,
the executive sends the monitor messages indicating the progress of the execution. On S
an interrupt from the keyboard, control is returned to the monitor as described above. If
the interrupt is received while messages from the executive are being processed, then
the message processing is completed before the interrupt is recognized.

The quit command causes the monitor to terminate. It can be restarted at any time 0
while the executive is active.

To illustrate the use of the monitor, we will use a small Durra application. The example
application in Figure 4 consists of two type definitions, a data source task with one out-
put port, two data sink tasks, each with one input port, and an instance of the predefined
task broadcast, which transmits data received from the source task to each of the sink
tasks.

8 CMU/SEI-89-TR-32

TaskA0

Broadcast

TaskB TaskCj

a -- Application Structure

type byte is size 8;

type string is array of byte;

b -- Type Declarations
task taska

ports
outl: out string;

attributes
processor = vax;
implementation = "source-task";

end taska;

task taskb
ports

inl: in string;
attributes

processor = sun;
implementation = "sink task";

end taskb;

task taskc
ports

inl: in string;
attributes

processor = vax;
implementation = "sink task";

end taskc;

c -- Task Descriptions

task main
structure

process pl: task taska;
p2: task taskb;
p3: task taskc;
pb: task broadcast

ports inl: in string;
outl, out2: out string;

end broadcast;
queues qlb[1O]: pl.outl >> pb.inl;

qb2[1O]: pb.outl >> p2.inl;
qb3(lO]: pb.out2 >> p3.inl;

end main;

d -- Application Description
CMU/SEI-9-TR-32 Figure 4: Durra Application Example 9

0

0

0

0

0

0

S

S

10 CMU/SEI-89- TR32
0

4. Application Debugger/Monitor Commands
The Durra application debugger/monitor is an interactive process which communicates
with the Durra executive at runtime to provide information about and control over the
progress of the application.

There are two ways to start the monitor in the Unix environment. To start the monitor
when the application begins executing, use an optional flag to the dexec command (this
requires X Window System support from the environment). To start the moritor after an
application has begun executing, use the dmonltor command. The details of each
method are described in the Durra User's Manual.

Commands to the monitor may be entered from the keyboard or from a file (or files)
specified by the user. Commands and keywords may be abbreviated to the shortest
non-ambiguous initial substring; identifiers must always be complete. This section de-
scribes the commands recognized by the monitor.

The following notation is used in the monitor command descriptions:

command or keyword
identifier or literal-value
-c a 1 b],, means choice of a or b
-'{ a } means that a is an optional argument

The character "*" is a wildcard symbol implying all possible values that make sense in
the context. In the context of an expected port, queue, task, or type name, the "*" ex-
pands to all such names in the application currently running. In the context of an ex-
pected rpc-name, the "*. expands to all the Durra interface call names. If an optional
argument is omitted, the effect is the same as if the value of the argument were "".

Excerpts from a sample monitoring session on the previously described example Durra
application appear throughout the following discussion. In all excerpts, lines beginning
with the prompt monitor> represent commands and all other lines represent monitor
responses.

4.1. Go, Quit, and Ctrl-C Commands
This section describes commands which control the interaction between the monitor and
executive.

go { duration }

The go command tells the executive to continue processing the application for a speci-
fied amount of time (in seconds) before prompting the users for more commands. If no
duration is specified, the application runs indefinitely. The user can always regain control
by typing ctrl-C to interrupt the monitor.

CMU/SEI-89-TR-32 11

quit 0

The quit command ends the monitoring session.

ctrl-C

A ctrl-C interrupts the application and prompts the user for a monitor command.

4.2. Watch and Break Commands

This section describes commands which allow the user to follow the flow of data through 0
an application and interrupt the application at any point of communication with the Durra
runtime.

dpbreak { [port-name I ''*'"] { [rpc-name I "*"] } }
dpwatch f [port-name I "*S'] { [rpc-name I''*''
dqbreak { [queue-name I "*''] { [rpc-name I "*'']) }
dqwatch{ [queue-name I ''I'' I { [rpc-name I ''I''] } }
dtbreak { [task-name I ''*''] { [rpc-name I ''I''] })
dtwatch { [task-name I ''*"] { [rpc-name I ''*''] } }

The above commands are used to delete break points or watch points, which are de-
fined below.

pbreak { [port-name I ''*E { [rpc-name I ''*'I] } }
pwatch { [port-name I ''*''] { [rpc-name I ''I''] } }
qbreak { [queue-name I ''E''] { [rpc-name I I'*''] })
qwatch { [queue-name I ''*'' E { [rpc-name I ''*'' I } }
tbreak { [task-name I "*'' 3 { [rpc-name I ''*'']) }
twatch { [task-name I ''*"] { [rpc-name I "*''] })

The above commands are used to set break points and watch points, where a break (or
watch) point is defined as a state in the application execution sequence at which a speci-
fied Durra object (port, queue, or task) is referenced by one of a specified set of task
interface rpcs. When a break point is set and the application reaches the specified inter-
face call on (from) the specified object, the application is interrupted and control passes
to the monitor so that the user may issue further commands. When a watch point is set,
the monitor informs the user that the watch point has been passed but the application
continues to run.

In the following excerpt, the user sets a watch point on the port main . pl .out 1 for all
rpcs and then issues the go command, causing the application to resume running. The
monitor displays a message each time an rpc targeted at main.pl.out, occurs. In 0
this case, only Send-Port calls are occurring on that port. The messages continue
until there is no more activity on that port or until the user interrupts from the keyboard.

12 CMU/SEi-89-TR-32

monitor> pwatch main.pl.outl *
monitor> go
Watch at port MAIN.PI.OUTI, RPC = SENDPORT
Watch at port MAIN.Pl.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUTl, RPC = SENDPORT
Watch at port MAIN.P1.OUTI, RPC = SEND-PORT
Watch at port MAIN.Pl.OUTI, RPC - SEND-PORT
Watch at port MAIN.Pl.OUTI, RPC = SEND-PORT
Watch at port MAIN.Pl.OUTI, RPC = SENDPORT

Next, the user removes all port watch points and sets a queue watch point on queue
main. qb2 for all rpcs. The queue has an associated producer port, main .pbl. outl,

and an associated consumer port, main.p2. inl. The occurrence of an rpc on either
port, then, causes a message to be displayed by the monitor. (If the port watch point
had not been removed, port and queue watch point responses would have been
interleaved). When a Send_Port or GetPort occurs, the monitor describes the
queue state. Below, when the SendPort occurs, the consumer task is already waiting
for the data and so the data is immediately transmitted, bypassing the queue. The con-
sumer then issues another GetPort before any more data has been sent and so it is
blocked, waiting for data to arrive.

monitor> dpwatch * *
monitor> qwatch main.qb2 *
monitor> go
Watch at queue MAIN.QB2, RPC = TESTOUTPUTPORT, on port

MAIN.PBI.OUT1
Watch at queue MAIN.QB2, RPC = SEND-PORT, issued by task MAIN.PBl

Some task already waiting, data sent immediately
Watch at queue MAIN.QB2, RPC = GET PORT, issued by task MAIN.P2

Queue is empty, receiver is blocked
Watch at queue MAIN.QB2, RPC = TESTOUTPUTPORT, on port MAIN.PB1.

OUT1

Now the user removes all queue watch points and sets a watch point on the task
main .pbl for all rpcs. Each time an rpc originates from that task, a message identifying
the rpc (and the target port, where appropriate,) is displayed. In this case main .pbl is

an instance of the predefined broadcast task, and so the rpcs are only simulated.
monitor> dqwatch * *
monitor> twatch main.pbl *
monitor> go
Observed task MAIN.PBl doing TESTINPUTPORT at port MAIN.PBl.IN1
Observed task MAIN.PBI doing TEST-OUTPUT_PORT at port MAIN.PBI.OUTI
Observed task MAIN.PB1 doing TEST-OUTPUTPORT at port MAIN.PB1.OUT2
Observed task MAIN.PB1 doing GETPORT at port MAIN.PBl.INl
Observed task MAIN.PBI doing SENDPORT at port MAIN.PB1.OUT1
Observed task MAIN.PBI doing SEND-PORT at port MAIN.PB1.OUT2
Observed task MAIN.PBI doing SAFE

CMU/SEI-89-TR-32 13

Break points work exactly like watch points, except that when a break point is reached
the application is interrupted and the user has the opportunity to enter more commands. 0
In the following excerpt, the user removes the watch points previously set and then sets
a break point on any task doing a GetPort. At each occurrence the user responds
with the go command and the application continues to the next instance of GetPort.
The task break point is then removed and a queue break point set. The effect of the
queue break point is analogous to that of the task break point. 0

monitor> dtwatch * *
monitor> tbreak * getport
monitor> go
Break at task MAIN.PB1 doing GET_PORT at port MAIN.PBI.INl
monitor> go
Break at task MAIN.P3 doing GETPORT at port MAIN.P3.IN1
monitor> go
Break at task MAIN.P2 doing GET_PORT at port MAIN.P2.INl
monitor> dtbreak * *
monitor> qbreak main.qlb *
monitor> go
Break at queue MAIN.QlB, RPC - SENDPORT, issued by task MAIN.P1

Some task already waiting, data sent immediately
monitor> go
Break at queue MAIN.QIB, RPC = TESTINPUTPORT, on port MAIN.PBl.IN1
monitor> go
Break at queue MAIN.Q1B, RPC = GETPORT, issued by task MAIN.PB1

4.3. Kill, Stop, and Resume Commands

This section describes commands used to control the execution state of an application's
component tasks.

kill [task-name I ''*'']
stop [task-name I '*'']
resume [task-name I ''*"]

These commands are used to terminate, pause, or continue execution of a task at the
operating system level. As noted previously, break points interrupt a task at the point of
some interface call to the executive. It may happen, though, that the user wishes to
interrupt an application task that executes for long periods of time without resorting to an
interface call; on such occasions the stop and resume commands are useful. The kill
command might be used to simulate the occurrence of unexpected task failure for sys-
tem testing purposes.

14 CMU/SEI-89-TR-32

4.4. Show and Track Commands

This section describes commands which allow the user to see information about the ap-
plication currently executing.

show attributes [task-name I ''*'']

The show attributes command displays the attributes of the specified task(s). In the
example following we see the attributes of task main. p2.

monitor> show attributes main.p2
ATTRIBUTES of task MAIN.P2

implementation = sink-task
processor = SUN
source = taskb.durra.TREE
xdisplay = :0.0

show configuration

The show configuration command displays the name of the current configuration and
all configurations which can be reached directly from the current level.

show port [port-name I ''*'']
showqueue [queue-name I ''*''

show task [task-name I ''*"]
show type [type-name I ''I]

These commands display information the Durra executive knows about the application's
Durra ports, queues, tasks, and types. Each of the following fragments demonstrates
the results of one of these commands. Additional information is displayed when the situ-
ation warrants. For instance, if any break points or watch points have been set on the
ports, queues, or tasks in question, then that information will be shown.

monitor> show port main.p3.inl
NAME - MAIN.P3.INI

ID - 2
CONFIGURATIONLEVEL = MAIN
DATA TYPE = STRING
ASSOCIATEDQUEUE = MAIN.QB3
STATUS = CONFIGURED
PORTDIRECTION = IN

The following example shows that the receiving tasks are waiting for data at queues
main.qb2 and main.qb3, but neither sender nor receiver is waiting at queue
main. qlb (since no "waitingclient" field is displayed). Queue main. qlb has an up-
per bound of 10 messages and currently contains three. The results of any active track
command would also be displayed here.

CMU/SEI-89-TR-32 15

0

monitor> show queue *

NAME - MAIN.Q1B
ID - 0
CONFIGURATION LEVEL - MAIN
SOURCE PORT - MAIN.P1.OUT1
DESTINATIONPORT - MAIN.PB1.IN1
BOUND = 10
ELEMENTCOUNT - 3
STATUS - CONFIGURED

NAME = MAIN.QB2
ID =2
CONFIGURATION LEVEL - MAIN
SOURCE PORT - MAIN.PB1.OUT1
DESTINATIONPORT - MAIN.P2.IN1
BOUND - 10
ELEMENTCOUNT = 0
WAITINGCLIENT = MAIN.P2
STATUS - CONFIGURED

NAME = MAIN.QB3
ID - 3
CONFIGURATIONLEVEL - MAIN
SOURCEPORT = MAIN.PB1.OUT2
DESTINATIONPORT - MAIN.P3.IN1
BOUND =10 •
ELEMENTCOUNT = 0
WAITINGCLIENT - MAIN.P3
STATUS = CONFIGURED

Some explanation of the task fields may be required. The fields Mailbox and
Servermailbox refer to communications channels from the master executive to the
task and from the master executive to the server executive that started the task, respec-
tively. PID and XPID are the process IDs of the task and any associated xterm[6].
SignalPending indicates whether or not a signal has been received from this task
during a reconfiguration. Time_Out is the time in seconds that the task has to get to a
quiescent state [7] for reconfiguration before it is terminated. QuiesceStatus in-
dicates whether or not the task is in a reconfigurable state.

monitor> show task main.pl
NAME = MAIN.P1

KIND - USER
ID = 3
CONFIGURATIONLEVEL = MAIN
MAILBOX = 9

SERVER MAILBOX = 5
PID = 10099
XPID = 0
PORTS = MAIN.P1.OUT1
SIGNAL PENDING = FALSE
TIMEOUT - 20
STATUS - CONFIGURED
QUIESCESTATUS - RUNABLE

The lowerbound and upper bound in the following type description refer to bounds
on the size of the type; since both have a value of 8, type byte is fixed-length, 8 bits.

16 CMU/SEI-89-TR-32

monitor> show type byte
NAME = BYTE

KIND - SIZETYPE
ID = 2
LOWER BOUND - 8
UPPERBOUND - 8

show state

The show queue and show task commands described above may provide more infor-
mation than is desired. For example, if at some point during application execution one
wished to know how many messages were in each queue, one could display all queue
information using the command show queue * and then browse through it looking for
the relevant numbers. Instead, we provide the show state command, the purpose of
which is to display a concise picture of the state of the tasks and queues comprising the
application. Below is a sample; the user may assume that any task not shown is not
blocked currently and any queue not shown is empty.

monitor> show state
Task MAIN.P2 (consumer) blocked at queue MAIN.QB2
Queue MAIN.QIB contains 1 messages, bound = 1

show track [queue-name I ''*' '

The show track command displays the results of a track command on the specified
queue(s). The tracking operation records the elapsed time since tracking began, the
number of data items that have passed through the queue during that time, the average
time a data item spent in the queue, and the number of times the sending and receiving
tasks blocked while attempting to write to or read from the queue. In the following ex-
cerpt, we see the user request a track operation on all queues. The application starts
and runs until interrupted from the keyboard. The results of the tracking operation after
90 seconds show that 120 data elements passed through each queue. The receiving
task connected to main. qb2 had to wait every time; hence the average time a datum
spent in the queue was zero, since each was sent directly out when it arrived. In the
other two queues, neither sender nor receiver ever blocked, and so the average wait
time in the queue is non-zero.

CMU/SEI-89-TR-32 17

monitor> track *
monitor> go

(keyboard interrupt)
monitor> show track *

NAME = MAIN.Q1B
ELAPSED TRACK TIME = 90.0 seconds
DATA FLOW COUNT - 120
AVG TIME IN QUEUE - 1.666E-3 seconds S
SENDER BLOCKED 0 times
RECEIVER BLOCKED 0 times

NAME = MAIN.QB2
ELAPSEDTRACKTIME - 90.0 seconds
DATA FLOW COUNT = 120
AVG TIMEINQUEUE = 0.OOOE+0 seconds
SENDER BLOCKED 0 times
RECEIVER BLOCKED 120 times

NAME = MAIN.QB3
ELAPSEDTRACKTIME = 90.0 seconds
DATAFLOWCOUNT - 120
AVG TIMEINQUEUE - 8.333E-5 seconds
SENDERBLOCKED 0 times
RECEIVER-BLOCKED 0 times S

track [queue-name I
dtrack [queue-name I ' *'']

Beginning at the time it is issued, the track command initiates the collection of data
through the specified queue(s). Partial results of the tracking can be displayed at any
time with the show track command. Tracking continues until the dtrack command is
issued.

4.5. Read, Echo, and Silent Commands
This section describes commands which affect the manner in which the monitor commu-
nicates with its user.

read commandfile 0

The read command specifies a command file from which monitor commands should be
read. Command files may contain nested read commands. When the monitor finishes
reading the commands in the file, command processing continues from the scope in
which the read command was invoked, unless the file contains a quit command, in
which case the monitor is terminated as usual.

echo

The echo command requests that monitor commands be displayed as they are proc- -
essed. This is the default when commands are entered interactively. If the commands

18 CMU/SEI-89-TR-32
S

are being read by the monitor from a file, tl- default is silent, or no display, except when
the file is being read via a nested read command, in which case the echoing status is
inherited from the calling environment.

silent

The silent command suppresses the display of monitor commands that are read from
command files. This is the default (unless echo is inherited from an enclosing file). This
command has no effect when issued interactively.

4.6. Set Commands
This section describes the commands used to change certain values maintained by the
Durra runtime.

set attribute task-name attribute-name attribute-value

The set attribute command gives the specified task an arbitrarily-named attribute with
an arbitrary string value. Attributes controlling process execution location and display
location do not take effect until the next time the process is started. Some attribute
names are reserved because they have special meaning to the Durra runtime; see the
Durra User's Manual for details.

set bound [queue-name I "*"'

positive-integer-value]

The set bound command changes the maximum size of the specified queue. The
change takes effect immediately. If a task has been blocked attempting to write to the
queue, and the new bound is larger than the old bound, the task will be unblocked.

4.7. Miscellaneous Commands

This section describes monitor commands which don't fit into any of the preceding cate-
gories.

debug task-name (debugger-string }

The debug command requests that the specified task be run under control of a source-
level debugger. The command must be issued before the task is started or it will have
no effect. The optional debugger-string provides a way to specify some debugger in-
vocation other than the environment-specified default (e.g., special arguments to the de-

CMUISEI-89-TR-32 19

fault debugger or a different debugger altogether). Since a separate terminal interface is
required for each debugger activated, this feature is only available when the environ- 0
ment supports the X Window System. Instead of starting the task directly, the Durra
executive starts an xterm and runs the specified debugger in it, giving it the task name
as an argument.

help 0

The help command displays an online help screen which lists the monitor commands.

reconfigure { configurationlabel)

The reconfigure command causes a reconfiguration to the specified configuration level
to occur, regardless of the state of any specified trigger condition. The configuration
label is optional if there is only one possible reconfiguration.

The command has no effect when the specified configuration does not exist or is un-
reachable from the current configuration. The command also fails when another recon-
figuration is pending, i.e., the executive has initiated a configuration change but has not
yet completed it (for instance, when waiting for a task to get to a quiescent state). Only
one reconfiguration may be in progress at any point in time.

20 CMU/SEI-89-TR-32

References
[1] M.R. Barbacci, C.B. Weinstock, and J.M. Wing.

Programming at the Processor-Memory-Switch Level.
In Proceedings of the 10th International Conference on Software Engineering.

Singapore, April, 1988.

[2] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock.
The Durra Runtime Environment.
Technical Report CMU/SEI-88-TR-18 (DTIC: ADA199480), Software Engineering

Institute, Carnegie Mellon University, July, 1988.

[3] M.R. Barbacci and J.M. Wing.
Durra: A Task-Level Description Language Reference Manual (Version 2).
Technical Report CMU/SEI-89-TR-34, Software Engineering Institute, Carnegie

Mellon University, September, 1989.

[4] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, and J.M. Wing.
Developing Applications for Heterogeneous Machine Networks: The Durra Envi-

ronment.
Computing Systems 2(1), March, 1989.

[5] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock.
Durra: A Task-Level Description Language User's Manual
Technical Report CMU/SEI-89-TR-33, Software Engineering Institute, Carnegie

Mellon University, September, 1989.

[6] R.W. Scheifler and J. Gettys.
The X Window System.
ACM Transactions on Graphics 5(2):79-109, April, 1986.

[7] C.B. Weinstock.
Performance and Reliability Enhancement of the Durra Runtime Environment.
Technical Report CMU/SEI-89-TR-8 (DTIC: ADA207445), Software Engineering

Institute, Carnegie Mellon University, February, 1989.

CMU/SEI-89-TR-32 21

0

S

S

0

0

0

0

0

S

22 CMU/SEI-89-TR-32

S

Index
*ra s 1Threak 12

Track 15, 17, 18Broadcast 13 Twatch 12

Ctrl-C 11,12 Xterm 16

Debug 19
Dexec 11
Dmonitor 11
Dpbreak 12
Dpwatch 12
Dqbreak 12
Dqwatch 12
Dtbr6ak 12
Dtrack 18
Dtwatch 12

Echo 18, 19

Go 8, 11, 12, 14

Help 20

Interrupt 11

Kill 14

Pbreak 12
Pwatch 12

Qbreak 12
Quiescent 16, 20
Quit 8, 12, 18
Qwatch 12

Read 18,19
Reconfigure 20
Resume 14

Set attribute 19
Set bound 19
Show attributes 15
Show configuration 15
Show port 15
Show queue 15,17
Show state 17
Show task 15, 17
Show track 17, 18
Show type 15
Silent 19

* Stop 14

CMU/SEI-89-TR-32 23
0

0

0

0

0

0

0

0

0

0

0

24 CMU/SEI-89- TR-32 0

* UNL IMITED, 11N LLSSI __
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ie REPORT SECURITY CLASSIFICA IION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2.. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBITION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-32 ESD-TR-89-43
6a, NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(1[applicabic)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City. State and ZIP Codel 7b. ADDRESS (City. Slate and ZIP Cod,)I

CARNEGIE MELLON UNIVERSITY ESD/XRSi
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (it applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO. NO. NO.

PTTTBIIRCH. PA 15213 N/A N/A N/A
1 1. TIT LE (Include Security Classi1fica=tion)

The Durra Application Debugger/Monitor

12. PERSONAL AUTHOR(S)

Dennis L. Doubleday
13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y,.. M4o.. Day) 15. PAGE COUNT

FINALi ROM TO September, 1989 T

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reuerse if nccessary and identfY by biock nInlber)

FIELD I GROUP SUB GR

19. ABSTRACT ICon tnue on reverse If necessary and identify by block numberl

Durra is a language designed to support the construction of distributed applications

using concurrent, coarse-grained tasks running on networks of heterogeneous processors.

An application written in Durra describes the tasks to be instantiated and executed

as concurrent processes, the types of data to be exchanged by the processes, and the

intermediate queues required to store the data as they move from producer to consumer

processes.

This report describes the Durra application debugger/monitor, a program that works in

conjunction with the Durra runtime software to help the developer located errors and/or

performance bottlenecks in a Durra application.

20 DISTRIBUTION/AVAILABILOTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO K SAME AS RPT Li OTIC USERS 0 UNCLASSIFIED, UNLIMITED

22& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL SHINGLER (lnclidI .4,o Cde'
(412) 268-7630 SEI JPO

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGZ

